
Checking Primitives with Guards

Dong Zhang
BSCH

Department of Computer Science
University of Auckland

October 2005

Abstract

The concept of guards were introduced by Hoi Chang and Mikhail Atal-
lah as a tamper resistance mechanism. Part of this scheme is a checking
primitive—code checksum, which calculates the checksum of a protected code
segment. Its counterparts include code hashing [BHT01] and oblivious hash-
ing [YCJ02]. For these two primitives though, there lacks an investigation
of constructing a protection system like guards. This paper will try to look
at the possible approaches and difficulties of constructing such frameworks.
We would first briefly describe the checksum guards, then show how code
hashing can come in as guards’ primitive; and finally we try to discuss the
potential problems of an Oblivious Hashing—guard scheme.

Contents

Abstract i

Acknowledgements ii

1 Introduction and overview 1

2 Static Primitives with Guards 3
2.1 Code Checksum and Hashing 3

2.1.1 Checksum . 3
2.1.2 Code Hashing . 5

2.2 Guards . 5
2.2.1 Guard with Code Hashing 5
2.2.2 Guard network . 6
2.2.3 An attack . 7

3 Oblivious Hashing with Guards 8
3.1 Oblivious Hashing . 8
3.2 Working with Guards . 9

3.2.1 Oblivious Hashing as a Primitive 9
3.2.2 Guard Network and Cross Checking 11
3.2.3 Repairing . 12

4 Conclusion and Further Work 13

i

Acknowledgements

I would like to thank Prof. Clark Thomborson for the most valuable advices
in constructing this term paper.

Also, I would like to acknowledge the CS725 S2 05 course which has offered
a truly enjoyable learning experience.

ii

Chapter 1

Introduction and overview

Protection on software against unauthorized modification has gained more
awareness over the past few years. Such a protection, more specifically, is
expected to stop anyone from tampering the execution code. This concept
was formally discussed in Aucsmith’s paper [Auc96], where tamper resis-
tance software was defined as “. . . software which is resistant to observation
and modification”. To achieve this target, 3 principle approaches have been
developed[CT02]. One of them is checking the software execution code, which
means the software should be able to verify its own code integrity and take
certain actions once an unauthorized tampering is evident. It is believed that
the whole mechanism for this approach should consist of at least a detection
part and an action part[CT02]. The detection part should be able to recog-
nize modifications on the code and trigger the action part.

The detection step can be farther divided into two steps(Figure 1.1), which
are:
1. Obtain a signature representing the to-be-checked code.
2. verify the signature to see if the program is identical to the original one.
For the first step, researchers have designed different primitives that can be

used as representations of code segments. For example, Horne et al.[BHT01]
suggested using testers which computes a hash value of a specific code sec-
tion; and in Hoi Chang and Mikhail Atallah’s [CA01], their guards were
based on code checksum. On the other hand, a relatively new method called
Oblivious Hashing(OH), has been proposed by Chen et al.[YCJ02]. This
verification primitive, is believed to be able to dynamically capture the pro-

1

Figure 1.1: A tamper proofing system

gram’s execution trace; but in contrast with guards, the inventors did not
put their emphasis on constructing a complete tamper resistance framework
using oblivious hashing.

This paper intends to discuss the issues when code checksum is replaced
by two other methods. The paper is organized as following: Chapter 2
will briefly introduce the code checksum used by Chang and Atallah, then
present a code hashing guards idea. Chapter 3 will be centered around a
comparison between Oblivious hashing and two other primitives. Part of
this chapter addresses the issues of a OH–guard framework. Chapter 4 will
have a conclusion and a preview of possible future work.

2

Chapter 2

Static Primitives with Guards

Static detection means the actual execution code is checked for integrity.
Normal approach would first obtain a signature(static primitive) of a code
segment, in the form of either a checksum or a hash value. This section will
explore how the above two work with guards.

2.1 Code Checksum and Hashing

2.1.1 Checksum

As proposed by Chang et al.[CA01], the guards ”Checksum another piece of
program code at runtime and verify its integrity”. This paper will use the
approach implemented in this publication as the way checksum is obtained.
We firstly define two terms for clarity.

• target code: code segment that is protected.

• watching code: code that segment that calculates the checksum of tar-
get code.

The watching code would firstly set a register for storing the checksum. Then
it loads in the memory location of the first instruction in the target code seg-
ment; after obtaining the memory content at this location, the watching code

3

adds the instruction content as binary data into the register and goes for the
next instruction of the target code. Therefore, by the end of all iterations,
the register should have the sum of all instructions. Once a checksum of the
target code is obtained, we can apply a verification on the checksum to see
if the code has been altered. An illustration of a simple implementation by
Chang et al. is shown as below(Figure 2.1).

Figure 2.1: guard Example from [CA01]

Several facts of the this process have made code checksum a promising prim-
itive for tamper detection. In the above described procedure, the signa-
ture(checksum) is only based on target code instructions, which means the
calculation of checksum does not depend on the runtime environment. So in-
serting the summing computation can be made simple. As argued in [CA01],
this checksum calculation routine can be inserted into binary code after com-
pilation as long as it does not corrupt the memory space used by normal code.
Therefore, it enables a third party to apply protection on a compiled software
product.

On the other hand, it also has some defects . For example, reading a code
segment is considered as atypical behavior, which can lead attackers to lo-
cate watching code fairly soon. And also since the checksum only depends
on the static shape of target code segment, attackers can patch the return
checksum value at runtime to pass the watching code. [YCJ02] Further more,
with careful modification, one can change or patch the target code to make
its checksum remain same while the actual instructions may be changed for
malicious purpose.

4

2.1.2 Code Hashing

Other than checksumming the target code, hashing can also be used to obtain
a signature for the code being protected. Instead of simply summing the in-
structions, Horne et al. [BHT01] let the watching code compute a hash value
based on “a large interval of the executable (several hundred kilobytes)”;
then according to their argument, the chance that a changed interval map-
ping to the correct hash value can be reduced to the level of 2−32, if “a good
choice of hash function” is selected.

Despite many of the strengths listed in their paper, code hashing method also
has the similar problems as in code checksum. For example, it also needs to
read its own code segment, which stands out other normal operations; it is
also vulnerable to runtime patching attack, once the correct pre-stored hash
value is figured out.

Both code checksum and hashing obtain signatures from static code shapes.
Next section is devoted to explaining the whole guarding framework.

2.2 Guards

The guarding framework proposed by Chang and Atallah “is provided by a
network of execution units (or guards) embedded within a program” [CA01].
These guards are designed to be capable of doing any computations [vO03].
We would like to spend this section giving a brief design of a hashing–guards
framework.

2.2.1 Guard with Code Hashing

The idea of letting Guard work with code hashing is to replace the checksum
computation with a linear hash function illustrated in [BHT01]. Take the
sample checksum guard in (Figure 2.1) for example, instead of adding the
content at memory address eax to register ebp, we can hash it with ebp
then update this register with the new hash value. A simple hash–guard
version of the previous example 2.1 can be shown as in (Figure 2.2).

5

Figure 2.2: A hash checking guard

More than just detection, guards’ repairing function can restore a modified
code segment to its original. This function is considered as a possible action
part. The way it was implemented in [CA01] was when watching code detects
a modification, a clean version is used to overwrite the damaged target code.
This fixing mechanism gives programs a choice to run as if unmodified. But
a sequential constraint is enforced here, that guards should get run before
target code does. This is one of the major concerns when designing a guard
network.

2.2.2 Guard network

Similarly, the guard network suggested by Chang et al.[CA01] can be con-
structed in hashing–guard framework. The idea of guard network enables
guards to verify other guards , which means watching code becomes target
code. Thus an attempt to poison a guard will trigger other guards to sound
alert. Once a guard cycle is formed, an attacker has to disable all the guards
on this cycle at the same time to get rid of protection. One sample guard
network used in [CA01] is shown as below in Figure 2.3.

There is a requirement when constructing the guard network. As damaged
code needs to be fixed before being executed, repairing action should dom-
inant the target code in the control flow sequence. This can lead to some

6

Figure 2.3: A guard network from [CA01]

constraints on selection of guard placement. Such constraints would pose a
significant difficulty in the Oblivious Hashing–Guard framework. Later sec-
tion will have more about this.

2.2.3 An attack

A generic attacking model developed by Wurster et al.[ea05] exploited the
fact that many modern microprocessors failed to translate both the code and
data virtual memory address into the same set of bytes. Thus it is possi-
ble that “when running, the processor would execute the attackers modified
instructions; when checksumming, the application would read a copy of its
unmodified code.”[ea05] Processors like UltraSparc, x86 have been proved to
be vulnerable to such attacks. This also justified the arguments in [YCJ02],
the atypical behavior that a program reads its own code can let the guard
be found out fairly soon.

7

Chapter 3

Oblivious Hashing with Guards

3.1 Oblivious Hashing

Oblivious Hashing was a concept proposed by Chen et al. in [YCJ02] as a
software verification primitive. Unlike the previous static tamper detection,
this method tries to find a signature of a piece of code based on its execution
behavior. The way this is achieved is through capturing the memory content
at runtime. Detailed explanation can be found in Chen’s paper.

Although not clearly mentioned in their writing, the basic assumption that
makes it work is the input and output can precisely define an instruction.
The authors argued that with careful analysis, it is possible for an attacker
to modify the code and still produce the correct oblivious hash. If this is
the case, the modified code would make the same impact to watched mem-
ory spaces as the original program does. As we shrink down the protection
region, the above attack become significantly hard to achieve because the
modification to a small set of instructions is very much constrained by ex-
pected input/output values pair. On the other hand, we believe potential
vulnerabilities do exist, such as memory patching attack. Chen’s paper has
more discussion about these issues.

The property of relying on memory content changes has substantially dis-
tinguished oblivious hashing from code checksum and hashing. This feature
takes OH beyond some of the limitations that the other two primitives have.

8

For example, reading memory is a typical operation which does not easily at-
tract hackers’ attention. So even without obfuscation techniques, Oblivious
Hashing fairly suffice the requirement for stealthiness. Another advantage
is that unlike in static detection, oblivious hash is dependent on input and
output, and obtained at runtime. Therefore, the attacking model mentioned
in Chapter 2 loses its base that a damaged code is run but its original copy
is checked.[ea05].

3.2 Working with Guards

Assuming in a hardware environment as described in [ea05], where in virtual
memory, the logical boundary between executable code and data can be
identified, we try to address the differences between using oblivious hash and
checksum. Meanwhile other issues will also be investigated.

3.2.1 Oblivious Hashing as a Primitive

Different from checking code checksum, the guards in this case need to read
out the generated hash values from runtime data memory and compare with a
pre-stored value, whereas checksum need only to operate on the executables’
side of the memory space.

Figure 3.1: Guards with checksum after [CA01]

Figure 3.1 follows the design idea in [CA01]. The guarding agents G1 and
G2 calculate a code checksum of target segment and do a comparison with

9

the checksum of original code. The situation in oblivious hashing, however,
would look like in Figure 3.2.
In the above graph, the set of hashing instructions H1 is used to protect nor-

Figure 3.2: Guards with oblivious hash

mal code C1. It would generate a hash value based on the memory content
M1 that contains C1’s output information. Then H1 saves the hash value
into another memory space M2, where guard G1 can pick up and do the
checking. Unlike in Figure 3.1, where the checksum calculation is combined
with checking part into a guard, we would like to separate signature (OH)
acquisition out from the checking routine. This would leave the guard with
the only functionality of comparison. The reason to employ such a redesign
is that we can possibly insert some normal executions between H1 and G1.
Since all of the C1, H1 and G1 behave as normal instructions that read/write
data from/into runtime data memory, a delay in guarding action would make
the protection looks stealthier.

Following the above topic, it is probably a good idea to reuse memory space
as much as possible, especially where resources are limited. Also, when pro-
tection is to be applied on a compiled product, how long M1 retains the
information generated from C1 must be studied. In any case, in order to
give C1 coverage, we need to make sure that M1 is not overwritten by other
codes before we obtain the hash. this factual constrain may limit the delay
we can put between C1 and H1, but since we are in control of both H1 and
G1 and their memory usage, such constrain should be much looser between

10

H1 and G1.

3.2.2 Guard Network and Cross Checking

In [CA01], a guard network was constructed to strengthen resilience against
attacks. More specifically, a chained guard cycle mentioned in previous sec-
tion would pose a huge difficulty to hackers. In the smallest case, such a
cycle contains two guards, which can also be named cross checking.

Cross checking an oblivious hash would have more issues. The reason that
cross checking can be implemented with checksum is the guard code is static
while oblivious hashes depend on runtime execution. Abstractly speaking,
suppose we have two oblivious hashing guards G1 and G2 trying to cross
check each other. In order to verify that G2 has not been modified, G1 has
to check the oblivious hash generated by G2. And this has to happen at the
time when execution of G2 should have terminated. On other hand, to let
G2 verify G1’s hash, G2 has to wait until the hash of G1 is computed. To
resolve this sequence conflict, we may choose to let two guards cross check
each other part by part. see (Figure 3.3)
The above scheme would inevitably construct an infinite recursive checking.

Figure 3.3: oblivious hashing guards cross check each other

As also argued by Chen et al., an implicit way is needed to terminate recur-
sion without highlight the positions of guards to attackers. In addition, at

11

the point of forced stop, it is possible that certain parts of the guards are left
outside the protection coverage. Say as in the above example, if we stops at
checking M5, the third section of G2 will be exposed to be unprotected; and
moreover, if such an intention is recognized by an attacker, it may be also
possible that all the previous checkings are tracked out.

3.2.3 Repairing

One of the functionalities implemented in code checksum guard is the ability
to repair a piece of damaged code. Section 2 and the paper [CA01] described
how it works. The basic requirement for this feature is that a modified code
segment must be checked before it is run, then there is chance to repair the
damage ahead of execution. Since oblivious hashing captures runtime be-
havior, it is not possible to obtain a hash value until the protected code is
actually run. This conflict poses a major difficulty in adding repairing mech-
anism into oblivious hashing guards.

Continuing with the topic of clean code restoration, an interesting question
could be raised at higher security requirement level, namely—what if a piece
of modified code will already have caused harm by the time we detect it. This
is a discussion about the requirements to a complete tamper resistance sys-
tem. Whether there is a novel way that oblivious hashing–guards framework
can address this problem is still to be seen.

12

Chapter 4

Conclusion and Further Work

To construct a guarding framework with different primitives require different
considerations. A tradeoff between static and dynamic signature acquisitions
has been the theme of this paper. Although oblivious hashing is defensive
to the attacking model that can be applied to static detections, it also faces
many issues when guard framework is to be produced.

As tamper resistance is an active research area, an attractive topic could
be looking for a way to effectively combine different types of techniques, to
produce a stronger protection system than individuals.

13

Bibliography

[Auc96] David Aucsmith. Tamper resistant software: An implementation.
Lecture Notes In Computer Science, 1174:317–333, 1996.

[BHT01] Casey Sheehan Bill Horne, Lesley Matheson and Robert E. Tarjan.
Dynamic self-checking techniques for improved tamper resistance.
Lecture Notes In Computer Science, 2320, 2001.

[CA01] Hoi Chang and Mikhail Atallah. Protecting software code by
guards. Lecture Notes In Computer Science, 2320:160–175, 2001.

[CT02] C.S. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation- tools for software protection. IEEE
Trans. Software Engineering, 28, June 2002.

[ea05] Glenn Wurster el al. A generic attack on checksumming-based soft-
ware tamper resistance. Proceedings of the 2005 IEEE Symposium
on Security and Privacy, 2005.

[vO03] P.C. van Oorschot. Revisiting software protection. In Proc. of 6th
International Information Security Conference (ISC 2003).Lecture
Notes In Computer Science, 2851, October 2003.

[YCJ02] Matthew Cary Ruoming Pang Saurabh Sinha Yuqun Chen, Rama-
rathnam Venkatesan and Mariusz H. Jakubowski. Oblivious hash-
ing: A stealthy software integrity verification primitive. Lecture
Notes In Computer Science, 2578:400–414, 2002.

14

